| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mgm0 | ⊢ ( ( 𝑀  ∈  𝑉  ∧  ( Base ‘ 𝑀 )  =  ∅ )  →  𝑀  ∈  Mgm ) | 
						
							| 2 |  | rzal | ⊢ ( ( Base ‘ 𝑀 )  =  ∅  →  ∀ 𝑥  ∈  ( Base ‘ 𝑀 ) ∀ 𝑦  ∈  ( Base ‘ 𝑀 ) ∀ 𝑧  ∈  ( Base ‘ 𝑀 ) ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝑀 ) 𝑧 )  =  ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ) ) | 
						
							| 3 | 2 | adantl | ⊢ ( ( 𝑀  ∈  𝑉  ∧  ( Base ‘ 𝑀 )  =  ∅ )  →  ∀ 𝑥  ∈  ( Base ‘ 𝑀 ) ∀ 𝑦  ∈  ( Base ‘ 𝑀 ) ∀ 𝑧  ∈  ( Base ‘ 𝑀 ) ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝑀 ) 𝑧 )  =  ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ) ) | 
						
							| 4 |  | eqid | ⊢ ( Base ‘ 𝑀 )  =  ( Base ‘ 𝑀 ) | 
						
							| 5 |  | eqid | ⊢ ( +g ‘ 𝑀 )  =  ( +g ‘ 𝑀 ) | 
						
							| 6 | 4 5 | issgrp | ⊢ ( 𝑀  ∈  Smgrp  ↔  ( 𝑀  ∈  Mgm  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝑀 ) ∀ 𝑦  ∈  ( Base ‘ 𝑀 ) ∀ 𝑧  ∈  ( Base ‘ 𝑀 ) ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝑀 ) 𝑧 )  =  ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ) ) ) | 
						
							| 7 | 1 3 6 | sylanbrc | ⊢ ( ( 𝑀  ∈  𝑉  ∧  ( Base ‘ 𝑀 )  =  ∅ )  →  𝑀  ∈  Smgrp ) |