Metamath Proof Explorer


Theorem shslej

Description: Subspace sum is smaller than subspace join. Remark in Kalmbach p. 65. (Contributed by NM, 12-Jul-2004) (New usage is discouraged.)

Ref Expression
Assertion shslej ( ( 𝐴S𝐵S ) → ( 𝐴 + 𝐵 ) ⊆ ( 𝐴 𝐵 ) )

Proof

Step Hyp Ref Expression
1 oveq1 ( 𝐴 = if ( 𝐴S , 𝐴 , ℋ ) → ( 𝐴 + 𝐵 ) = ( if ( 𝐴S , 𝐴 , ℋ ) + 𝐵 ) )
2 oveq1 ( 𝐴 = if ( 𝐴S , 𝐴 , ℋ ) → ( 𝐴 𝐵 ) = ( if ( 𝐴S , 𝐴 , ℋ ) ∨ 𝐵 ) )
3 1 2 sseq12d ( 𝐴 = if ( 𝐴S , 𝐴 , ℋ ) → ( ( 𝐴 + 𝐵 ) ⊆ ( 𝐴 𝐵 ) ↔ ( if ( 𝐴S , 𝐴 , ℋ ) + 𝐵 ) ⊆ ( if ( 𝐴S , 𝐴 , ℋ ) ∨ 𝐵 ) ) )
4 oveq2 ( 𝐵 = if ( 𝐵S , 𝐵 , ℋ ) → ( if ( 𝐴S , 𝐴 , ℋ ) + 𝐵 ) = ( if ( 𝐴S , 𝐴 , ℋ ) + if ( 𝐵S , 𝐵 , ℋ ) ) )
5 oveq2 ( 𝐵 = if ( 𝐵S , 𝐵 , ℋ ) → ( if ( 𝐴S , 𝐴 , ℋ ) ∨ 𝐵 ) = ( if ( 𝐴S , 𝐴 , ℋ ) ∨ if ( 𝐵S , 𝐵 , ℋ ) ) )
6 4 5 sseq12d ( 𝐵 = if ( 𝐵S , 𝐵 , ℋ ) → ( ( if ( 𝐴S , 𝐴 , ℋ ) + 𝐵 ) ⊆ ( if ( 𝐴S , 𝐴 , ℋ ) ∨ 𝐵 ) ↔ ( if ( 𝐴S , 𝐴 , ℋ ) + if ( 𝐵S , 𝐵 , ℋ ) ) ⊆ ( if ( 𝐴S , 𝐴 , ℋ ) ∨ if ( 𝐵S , 𝐵 , ℋ ) ) ) )
7 helsh ℋ ∈ S
8 7 elimel if ( 𝐴S , 𝐴 , ℋ ) ∈ S
9 7 elimel if ( 𝐵S , 𝐵 , ℋ ) ∈ S
10 8 9 shsleji ( if ( 𝐴S , 𝐴 , ℋ ) + if ( 𝐵S , 𝐵 , ℋ ) ) ⊆ ( if ( 𝐴S , 𝐴 , ℋ ) ∨ if ( 𝐵S , 𝐵 , ℋ ) )
11 3 6 10 dedth2h ( ( 𝐴S𝐵S ) → ( 𝐴 + 𝐵 ) ⊆ ( 𝐴 𝐵 ) )