Metamath Proof Explorer


Theorem sincld

Description: Closure of the sine function. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypothesis sincld.1 ( 𝜑𝐴 ∈ ℂ )
Assertion sincld ( 𝜑 → ( sin ‘ 𝐴 ) ∈ ℂ )

Proof

Step Hyp Ref Expression
1 sincld.1 ( 𝜑𝐴 ∈ ℂ )
2 sincl ( 𝐴 ∈ ℂ → ( sin ‘ 𝐴 ) ∈ ℂ )
3 1 2 syl ( 𝜑 → ( sin ‘ 𝐴 ) ∈ ℂ )