Metamath Proof Explorer


Theorem smofvon

Description: If B is a strictly monotone ordinal function, and A is in the domain of B , then the value of the function at A is an ordinal. (Contributed by Andrew Salmon, 20-Nov-2011)

Ref Expression
Assertion smofvon ( ( Smo 𝐵𝐴 ∈ dom 𝐵 ) → ( 𝐵𝐴 ) ∈ On )

Proof

Step Hyp Ref Expression
1 df-smo ( Smo 𝐵 ↔ ( 𝐵 : dom 𝐵 ⟶ On ∧ Ord dom 𝐵 ∧ ∀ 𝑥 ∈ dom 𝐵𝑦 ∈ dom 𝐵 ( 𝑥𝑦 → ( 𝐵𝑥 ) ∈ ( 𝐵𝑦 ) ) ) )
2 1 simp1bi ( Smo 𝐵𝐵 : dom 𝐵 ⟶ On )
3 2 ffvelrnda ( ( Smo 𝐵𝐴 ∈ dom 𝐵 ) → ( 𝐵𝐴 ) ∈ On )