| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cA |
⊢ 𝐴 |
| 1 |
0
|
wsmo |
⊢ Smo 𝐴 |
| 2 |
0
|
cdm |
⊢ dom 𝐴 |
| 3 |
|
con0 |
⊢ On |
| 4 |
2 3 0
|
wf |
⊢ 𝐴 : dom 𝐴 ⟶ On |
| 5 |
2
|
word |
⊢ Ord dom 𝐴 |
| 6 |
|
vx |
⊢ 𝑥 |
| 7 |
|
vy |
⊢ 𝑦 |
| 8 |
6
|
cv |
⊢ 𝑥 |
| 9 |
7
|
cv |
⊢ 𝑦 |
| 10 |
8 9
|
wcel |
⊢ 𝑥 ∈ 𝑦 |
| 11 |
8 0
|
cfv |
⊢ ( 𝐴 ‘ 𝑥 ) |
| 12 |
9 0
|
cfv |
⊢ ( 𝐴 ‘ 𝑦 ) |
| 13 |
11 12
|
wcel |
⊢ ( 𝐴 ‘ 𝑥 ) ∈ ( 𝐴 ‘ 𝑦 ) |
| 14 |
10 13
|
wi |
⊢ ( 𝑥 ∈ 𝑦 → ( 𝐴 ‘ 𝑥 ) ∈ ( 𝐴 ‘ 𝑦 ) ) |
| 15 |
14 7 2
|
wral |
⊢ ∀ 𝑦 ∈ dom 𝐴 ( 𝑥 ∈ 𝑦 → ( 𝐴 ‘ 𝑥 ) ∈ ( 𝐴 ‘ 𝑦 ) ) |
| 16 |
15 6 2
|
wral |
⊢ ∀ 𝑥 ∈ dom 𝐴 ∀ 𝑦 ∈ dom 𝐴 ( 𝑥 ∈ 𝑦 → ( 𝐴 ‘ 𝑥 ) ∈ ( 𝐴 ‘ 𝑦 ) ) |
| 17 |
4 5 16
|
w3a |
⊢ ( 𝐴 : dom 𝐴 ⟶ On ∧ Ord dom 𝐴 ∧ ∀ 𝑥 ∈ dom 𝐴 ∀ 𝑦 ∈ dom 𝐴 ( 𝑥 ∈ 𝑦 → ( 𝐴 ‘ 𝑥 ) ∈ ( 𝐴 ‘ 𝑦 ) ) ) |
| 18 |
1 17
|
wb |
⊢ ( Smo 𝐴 ↔ ( 𝐴 : dom 𝐴 ⟶ On ∧ Ord dom 𝐴 ∧ ∀ 𝑥 ∈ dom 𝐴 ∀ 𝑦 ∈ dom 𝐴 ( 𝑥 ∈ 𝑦 → ( 𝐴 ‘ 𝑥 ) ∈ ( 𝐴 ‘ 𝑦 ) ) ) ) |