| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cA |
|- A |
| 1 |
0
|
wsmo |
|- Smo A |
| 2 |
0
|
cdm |
|- dom A |
| 3 |
|
con0 |
|- On |
| 4 |
2 3 0
|
wf |
|- A : dom A --> On |
| 5 |
2
|
word |
|- Ord dom A |
| 6 |
|
vx |
|- x |
| 7 |
|
vy |
|- y |
| 8 |
6
|
cv |
|- x |
| 9 |
7
|
cv |
|- y |
| 10 |
8 9
|
wcel |
|- x e. y |
| 11 |
8 0
|
cfv |
|- ( A ` x ) |
| 12 |
9 0
|
cfv |
|- ( A ` y ) |
| 13 |
11 12
|
wcel |
|- ( A ` x ) e. ( A ` y ) |
| 14 |
10 13
|
wi |
|- ( x e. y -> ( A ` x ) e. ( A ` y ) ) |
| 15 |
14 7 2
|
wral |
|- A. y e. dom A ( x e. y -> ( A ` x ) e. ( A ` y ) ) |
| 16 |
15 6 2
|
wral |
|- A. x e. dom A A. y e. dom A ( x e. y -> ( A ` x ) e. ( A ` y ) ) |
| 17 |
4 5 16
|
w3a |
|- ( A : dom A --> On /\ Ord dom A /\ A. x e. dom A A. y e. dom A ( x e. y -> ( A ` x ) e. ( A ` y ) ) ) |
| 18 |
1 17
|
wb |
|- ( Smo A <-> ( A : dom A --> On /\ Ord dom A /\ A. x e. dom A A. y e. dom A ( x e. y -> ( A ` x ) e. ( A ` y ) ) ) ) |