Metamath Proof Explorer


Theorem snopiswrd

Description: A singleton of an ordered pair (with 0 as first component) is a word. (Contributed by AV, 23-Nov-2018) (Proof shortened by AV, 18-Apr-2021)

Ref Expression
Assertion snopiswrd ( 𝑆𝑉 → { ⟨ 0 , 𝑆 ⟩ } ∈ Word 𝑉 )

Proof

Step Hyp Ref Expression
1 0zd ( 𝑆𝑉 → 0 ∈ ℤ )
2 id ( 𝑆𝑉𝑆𝑉 )
3 1 2 fsnd ( 𝑆𝑉 → { ⟨ 0 , 𝑆 ⟩ } : { 0 } ⟶ 𝑉 )
4 fzo01 ( 0 ..^ 1 ) = { 0 }
5 4 feq2i ( { ⟨ 0 , 𝑆 ⟩ } : ( 0 ..^ 1 ) ⟶ 𝑉 ↔ { ⟨ 0 , 𝑆 ⟩ } : { 0 } ⟶ 𝑉 )
6 3 5 sylibr ( 𝑆𝑉 → { ⟨ 0 , 𝑆 ⟩ } : ( 0 ..^ 1 ) ⟶ 𝑉 )
7 iswrdi ( { ⟨ 0 , 𝑆 ⟩ } : ( 0 ..^ 1 ) ⟶ 𝑉 → { ⟨ 0 , 𝑆 ⟩ } ∈ Word 𝑉 )
8 6 7 syl ( 𝑆𝑉 → { ⟨ 0 , 𝑆 ⟩ } ∈ Word 𝑉 )