Description: A singleton of an ordered pair (with 0 as first component) is a word. (Contributed by AV, 23-Nov-2018) (Proof shortened by AV, 18-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | snopiswrd | ⊢ ( 𝑆 ∈ 𝑉 → { 〈 0 , 𝑆 〉 } ∈ Word 𝑉 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0zd | ⊢ ( 𝑆 ∈ 𝑉 → 0 ∈ ℤ ) | |
2 | id | ⊢ ( 𝑆 ∈ 𝑉 → 𝑆 ∈ 𝑉 ) | |
3 | 1 2 | fsnd | ⊢ ( 𝑆 ∈ 𝑉 → { 〈 0 , 𝑆 〉 } : { 0 } ⟶ 𝑉 ) |
4 | fzo01 | ⊢ ( 0 ..^ 1 ) = { 0 } | |
5 | 4 | feq2i | ⊢ ( { 〈 0 , 𝑆 〉 } : ( 0 ..^ 1 ) ⟶ 𝑉 ↔ { 〈 0 , 𝑆 〉 } : { 0 } ⟶ 𝑉 ) |
6 | 3 5 | sylibr | ⊢ ( 𝑆 ∈ 𝑉 → { 〈 0 , 𝑆 〉 } : ( 0 ..^ 1 ) ⟶ 𝑉 ) |
7 | iswrdi | ⊢ ( { 〈 0 , 𝑆 〉 } : ( 0 ..^ 1 ) ⟶ 𝑉 → { 〈 0 , 𝑆 〉 } ∈ Word 𝑉 ) | |
8 | 6 7 | syl | ⊢ ( 𝑆 ∈ 𝑉 → { 〈 0 , 𝑆 〉 } ∈ Word 𝑉 ) |