Description: Existential specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | spcimgf.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| spcimgf.2 | ⊢ Ⅎ 𝑥 𝜓 | ||
| spcimegf.3 | ⊢ ( 𝑥 = 𝐴 → ( 𝜓 → 𝜑 ) ) | ||
| Assertion | spcimegf | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝜓 → ∃ 𝑥 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spcimgf.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| 2 | spcimgf.2 | ⊢ Ⅎ 𝑥 𝜓 | |
| 3 | spcimegf.3 | ⊢ ( 𝑥 = 𝐴 → ( 𝜓 → 𝜑 ) ) | |
| 4 | 2 | nfn | ⊢ Ⅎ 𝑥 ¬ 𝜓 |
| 5 | 3 | con3d | ⊢ ( 𝑥 = 𝐴 → ( ¬ 𝜑 → ¬ 𝜓 ) ) |
| 6 | 1 4 5 | spcimgf | ⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 ¬ 𝜑 → ¬ 𝜓 ) ) |
| 7 | 6 | con2d | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝜓 → ¬ ∀ 𝑥 ¬ 𝜑 ) ) |
| 8 | df-ex | ⊢ ( ∃ 𝑥 𝜑 ↔ ¬ ∀ 𝑥 ¬ 𝜑 ) | |
| 9 | 7 8 | imbitrrdi | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝜓 → ∃ 𝑥 𝜑 ) ) |