Metamath Proof Explorer


Theorem sringcat

Description: The restriction of the category of (unital) rings to the set of special ring homomorphisms is a category. (Contributed by AV, 19-Feb-2020)

Ref Expression
Hypotheses srhmsubc.s 𝑟𝑆 𝑟 ∈ Ring
srhmsubc.c 𝐶 = ( 𝑈𝑆 )
srhmsubc.j 𝐽 = ( 𝑟𝐶 , 𝑠𝐶 ↦ ( 𝑟 RingHom 𝑠 ) )
Assertion sringcat ( 𝑈𝑉 → ( ( RingCat ‘ 𝑈 ) ↾cat 𝐽 ) ∈ Cat )

Proof

Step Hyp Ref Expression
1 srhmsubc.s 𝑟𝑆 𝑟 ∈ Ring
2 srhmsubc.c 𝐶 = ( 𝑈𝑆 )
3 srhmsubc.j 𝐽 = ( 𝑟𝐶 , 𝑠𝐶 ↦ ( 𝑟 RingHom 𝑠 ) )
4 eqid ( ( RingCat ‘ 𝑈 ) ↾cat 𝐽 ) = ( ( RingCat ‘ 𝑈 ) ↾cat 𝐽 )
5 1 2 3 srhmsubc ( 𝑈𝑉𝐽 ∈ ( Subcat ‘ ( RingCat ‘ 𝑈 ) ) )
6 4 5 subccat ( 𝑈𝑉 → ( ( RingCat ‘ 𝑈 ) ↾cat 𝐽 ) ∈ Cat )