Metamath Proof Explorer


Theorem ssabso

Description: The notion " x is a subset of y " is absolute for transitive models. Compare Example I.16.3 of Kunen2 p. 96 and the following discussion. (Contributed by Eric Schmidt, 19-Oct-2025)

Ref Expression
Assertion ssabso ( ( Tr 𝑀𝐴𝑀 ) → ( 𝐴𝐵 ↔ ∀ 𝑥𝑀 ( 𝑥𝐴𝑥𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 dfss3 ( 𝐴𝐵 ↔ ∀ 𝑥𝐴 𝑥𝐵 )
2 ralabso ( ( Tr 𝑀𝐴𝑀 ) → ( ∀ 𝑥𝐴 𝑥𝐵 ↔ ∀ 𝑥𝑀 ( 𝑥𝐴𝑥𝐵 ) ) )
3 1 2 bitrid ( ( Tr 𝑀𝐴𝑀 ) → ( 𝐴𝐵 ↔ ∀ 𝑥𝑀 ( 𝑥𝐴𝑥𝐵 ) ) )