Description: Implication of a class difference with a subclass. (Contributed by AV, 3-Jan-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssdifim | ⊢ ( ( 𝐴 ⊆ 𝑉 ∧ 𝐵 = ( 𝑉 ∖ 𝐴 ) ) → 𝐴 = ( 𝑉 ∖ 𝐵 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dfss4 | ⊢ ( 𝐴 ⊆ 𝑉 ↔ ( 𝑉 ∖ ( 𝑉 ∖ 𝐴 ) ) = 𝐴 ) | |
| 2 | eqcom | ⊢ ( ( 𝑉 ∖ ( 𝑉 ∖ 𝐴 ) ) = 𝐴 ↔ 𝐴 = ( 𝑉 ∖ ( 𝑉 ∖ 𝐴 ) ) ) | |
| 3 | 1 2 | sylbb | ⊢ ( 𝐴 ⊆ 𝑉 → 𝐴 = ( 𝑉 ∖ ( 𝑉 ∖ 𝐴 ) ) ) | 
| 4 | difeq2 | ⊢ ( 𝐵 = ( 𝑉 ∖ 𝐴 ) → ( 𝑉 ∖ 𝐵 ) = ( 𝑉 ∖ ( 𝑉 ∖ 𝐴 ) ) ) | |
| 5 | 4 | eqcomd | ⊢ ( 𝐵 = ( 𝑉 ∖ 𝐴 ) → ( 𝑉 ∖ ( 𝑉 ∖ 𝐴 ) ) = ( 𝑉 ∖ 𝐵 ) ) | 
| 6 | 3 5 | sylan9eq | ⊢ ( ( 𝐴 ⊆ 𝑉 ∧ 𝐵 = ( 𝑉 ∖ 𝐴 ) ) → 𝐴 = ( 𝑉 ∖ 𝐵 ) ) |