Metamath Proof Explorer


Theorem sshjval

Description: Value of join for subsets of Hilbert space. (Contributed by NM, 1-Nov-2000) (Revised by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)

Ref Expression
Assertion sshjval ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) → ( 𝐴 𝐵 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) )

Proof

Step Hyp Ref Expression
1 ax-hilex ℋ ∈ V
2 1 elpw2 ( 𝐴 ∈ 𝒫 ℋ ↔ 𝐴 ⊆ ℋ )
3 1 elpw2 ( 𝐵 ∈ 𝒫 ℋ ↔ 𝐵 ⊆ ℋ )
4 uneq12 ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → ( 𝑥𝑦 ) = ( 𝐴𝐵 ) )
5 4 fveq2d ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → ( ⊥ ‘ ( 𝑥𝑦 ) ) = ( ⊥ ‘ ( 𝐴𝐵 ) ) )
6 5 fveq2d ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝑥𝑦 ) ) ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) )
7 df-chj = ( 𝑥 ∈ 𝒫 ℋ , 𝑦 ∈ 𝒫 ℋ ↦ ( ⊥ ‘ ( ⊥ ‘ ( 𝑥𝑦 ) ) ) )
8 fvex ( ⊥ ‘ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) ∈ V
9 6 7 8 ovmpoa ( ( 𝐴 ∈ 𝒫 ℋ ∧ 𝐵 ∈ 𝒫 ℋ ) → ( 𝐴 𝐵 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) )
10 2 3 9 syl2anbr ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) → ( 𝐴 𝐵 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) )