| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-hilex |
⊢ ℋ ∈ V |
| 2 |
1
|
elpw2 |
⊢ ( 𝐴 ∈ 𝒫 ℋ ↔ 𝐴 ⊆ ℋ ) |
| 3 |
1
|
elpw2 |
⊢ ( 𝐵 ∈ 𝒫 ℋ ↔ 𝐵 ⊆ ℋ ) |
| 4 |
|
uneq12 |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑥 ∪ 𝑦 ) = ( 𝐴 ∪ 𝐵 ) ) |
| 5 |
4
|
fveq2d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ⊥ ‘ ( 𝑥 ∪ 𝑦 ) ) = ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
| 6 |
5
|
fveq2d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝑥 ∪ 𝑦 ) ) ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) |
| 7 |
|
df-chj |
⊢ ∨ℋ = ( 𝑥 ∈ 𝒫 ℋ , 𝑦 ∈ 𝒫 ℋ ↦ ( ⊥ ‘ ( ⊥ ‘ ( 𝑥 ∪ 𝑦 ) ) ) ) |
| 8 |
|
fvex |
⊢ ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) ∈ V |
| 9 |
6 7 8
|
ovmpoa |
⊢ ( ( 𝐴 ∈ 𝒫 ℋ ∧ 𝐵 ∈ 𝒫 ℋ ) → ( 𝐴 ∨ℋ 𝐵 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) |
| 10 |
2 3 9
|
syl2anbr |
⊢ ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) → ( 𝐴 ∨ℋ 𝐵 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) |