Description: A member of a nonempty bounded set of reals is less than or equal to the set's upper bound. (Contributed by NM, 12-Sep-1999)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | sup3i.1 | ⊢ ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) | |
| Assertion | suprubii | ⊢ ( 𝐵 ∈ 𝐴 → 𝐵 ≤ sup ( 𝐴 , ℝ , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sup3i.1 | ⊢ ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) | |
| 2 | suprub | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ 𝐵 ∈ 𝐴 ) → 𝐵 ≤ sup ( 𝐴 , ℝ , < ) ) | |
| 3 | 1 2 | mpan | ⊢ ( 𝐵 ∈ 𝐴 → 𝐵 ≤ sup ( 𝐴 , ℝ , < ) ) |