Step |
Hyp |
Ref |
Expression |
1 |
|
swrdcl |
⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ∈ Word 𝑉 ) |
2 |
|
wrdf |
⊢ ( ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ∈ Word 𝑉 → ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) : ( 0 ..^ ( ♯ ‘ ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ) ) ⟶ 𝑉 ) |
3 |
1 2
|
syl |
⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) : ( 0 ..^ ( ♯ ‘ ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ) ) ⟶ 𝑉 ) |
4 |
3
|
3ad2ant1 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) : ( 0 ..^ ( ♯ ‘ ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ) ) ⟶ 𝑉 ) |
5 |
|
swrdlen |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( ♯ ‘ ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ) = ( 𝑁 − 𝑀 ) ) |
6 |
5
|
oveq2d |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( 0 ..^ ( ♯ ‘ ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ) ) = ( 0 ..^ ( 𝑁 − 𝑀 ) ) ) |
7 |
6
|
feq2d |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) : ( 0 ..^ ( ♯ ‘ ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ) ) ⟶ 𝑉 ↔ ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) : ( 0 ..^ ( 𝑁 − 𝑀 ) ) ⟶ 𝑉 ) ) |
8 |
4 7
|
mpbid |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) : ( 0 ..^ ( 𝑁 − 𝑀 ) ) ⟶ 𝑉 ) |