Metamath Proof Explorer
Description: The symmetric difference of a class with itself is the empty class.
(Contributed by Scott Fenton, 25-Apr-2012)
|
|
Ref |
Expression |
|
Assertion |
symdifid |
⊢ ( 𝐴 △ 𝐴 ) = ∅ |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-symdif |
⊢ ( 𝐴 △ 𝐴 ) = ( ( 𝐴 ∖ 𝐴 ) ∪ ( 𝐴 ∖ 𝐴 ) ) |
| 2 |
|
difid |
⊢ ( 𝐴 ∖ 𝐴 ) = ∅ |
| 3 |
2 2
|
uneq12i |
⊢ ( ( 𝐴 ∖ 𝐴 ) ∪ ( 𝐴 ∖ 𝐴 ) ) = ( ∅ ∪ ∅ ) |
| 4 |
|
un0 |
⊢ ( ∅ ∪ ∅ ) = ∅ |
| 5 |
1 3 4
|
3eqtri |
⊢ ( 𝐴 △ 𝐴 ) = ∅ |