Step |
Hyp |
Ref |
Expression |
1 |
|
symgext.s |
⊢ 𝑆 = ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) |
2 |
|
symgext.e |
⊢ 𝐸 = ( 𝑥 ∈ 𝑁 ↦ if ( 𝑥 = 𝐾 , 𝐾 , ( 𝑍 ‘ 𝑥 ) ) ) |
3 |
1 2
|
symgextf1o |
⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → 𝐸 : 𝑁 –1-1-onto→ 𝑁 ) |
4 |
3
|
3adant1 |
⊢ ( ( 𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → 𝐸 : 𝑁 –1-1-onto→ 𝑁 ) |
5 |
|
eqid |
⊢ ( SymGrp ‘ 𝑁 ) = ( SymGrp ‘ 𝑁 ) |
6 |
|
eqid |
⊢ ( Base ‘ ( SymGrp ‘ 𝑁 ) ) = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) |
7 |
5 6
|
elsymgbas |
⊢ ( 𝑁 ∈ 𝑉 → ( 𝐸 ∈ ( Base ‘ ( SymGrp ‘ 𝑁 ) ) ↔ 𝐸 : 𝑁 –1-1-onto→ 𝑁 ) ) |
8 |
7
|
3ad2ant1 |
⊢ ( ( 𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → ( 𝐸 ∈ ( Base ‘ ( SymGrp ‘ 𝑁 ) ) ↔ 𝐸 : 𝑁 –1-1-onto→ 𝑁 ) ) |
9 |
4 8
|
mpbird |
⊢ ( ( 𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → 𝐸 ∈ ( Base ‘ ( SymGrp ‘ 𝑁 ) ) ) |