Database ZF (ZERMELO-FRAENKEL) SET THEORY ZF Set Theory - add the Axiom of Union "Strong" transfinite recursion tfrlem6  
				
		 
		
			
		 
		Description:   Lemma for transfinite recursion.  The union of all acceptable functions
       is a relation.  (Contributed by NM , 8-Aug-1994)   (Revised by Mario
       Carneiro , 9-May-2015) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypothesis 
						tfrlem.1 ⊢  𝐴   =  { 𝑓   ∣  ∃ 𝑥   ∈  On ( 𝑓   Fn  𝑥   ∧  ∀ 𝑦   ∈  𝑥  ( 𝑓  ‘ 𝑦  )  =  ( 𝐹  ‘ ( 𝑓   ↾  𝑦  ) ) ) }  
				
					Assertion 
					tfrlem6 ⊢   Rel  recs ( 𝐹  )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							tfrlem.1 ⊢  𝐴   =  { 𝑓   ∣  ∃ 𝑥   ∈  On ( 𝑓   Fn  𝑥   ∧  ∀ 𝑦   ∈  𝑥  ( 𝑓  ‘ 𝑦  )  =  ( 𝐹  ‘ ( 𝑓   ↾  𝑦  ) ) ) }  
						
							2 
								
							 
							reluni ⊢  ( Rel  ∪   𝐴   ↔  ∀ 𝑔   ∈  𝐴  Rel  𝑔  )  
						
							3 
								1 
							 
							tfrlem4 ⊢  ( 𝑔   ∈  𝐴   →  Fun  𝑔  )  
						
							4 
								
							 
							funrel ⊢  ( Fun  𝑔   →  Rel  𝑔  )  
						
							5 
								3  4 
							 
							syl ⊢  ( 𝑔   ∈  𝐴   →  Rel  𝑔  )  
						
							6 
								2  5 
							 
							mprgbir ⊢  Rel  ∪   𝐴   
						
							7 
								1 
							 
							recsfval ⊢  recs ( 𝐹  )  =  ∪   𝐴   
						
							8 
								7 
							 
							releqi ⊢  ( Rel  recs ( 𝐹  )  ↔  Rel  ∪   𝐴  )  
						
							9 
								6  8 
							 
							mpbir ⊢  Rel  recs ( 𝐹  )