Metamath Proof Explorer


Theorem tsetndxnstarvndx

Description: The slot for the topology is not the slot for the involution in an extensible structure. Formerly part of proof for cnfldfun . (Contributed by AV, 11-Nov-2024)

Ref Expression
Assertion tsetndxnstarvndx ( TopSet ‘ ndx ) ≠ ( *𝑟 ‘ ndx )

Proof

Step Hyp Ref Expression
1 4re 4 ∈ ℝ
2 4lt9 4 < 9
3 1 2 gtneii 9 ≠ 4
4 tsetndx ( TopSet ‘ ndx ) = 9
5 starvndx ( *𝑟 ‘ ndx ) = 4
6 4 5 neeq12i ( ( TopSet ‘ ndx ) ≠ ( *𝑟 ‘ ndx ) ↔ 9 ≠ 4 )
7 3 6 mpbir ( TopSet ‘ ndx ) ≠ ( *𝑟 ‘ ndx )