Metamath Proof Explorer


Theorem ucnimalem

Description: Reformulate the G function as a mapping with one variable. (Contributed by Thierry Arnoux, 19-Nov-2017)

Ref Expression
Hypotheses ucnprima.1 ( 𝜑𝑈 ∈ ( UnifOn ‘ 𝑋 ) )
ucnprima.2 ( 𝜑𝑉 ∈ ( UnifOn ‘ 𝑌 ) )
ucnprima.3 ( 𝜑𝐹 ∈ ( 𝑈 Cnu 𝑉 ) )
ucnprima.4 ( 𝜑𝑊𝑉 )
ucnprima.5 𝐺 = ( 𝑥𝑋 , 𝑦𝑋 ↦ ⟨ ( 𝐹𝑥 ) , ( 𝐹𝑦 ) ⟩ )
Assertion ucnimalem 𝐺 = ( 𝑝 ∈ ( 𝑋 × 𝑋 ) ↦ ⟨ ( 𝐹 ‘ ( 1st𝑝 ) ) , ( 𝐹 ‘ ( 2nd𝑝 ) ) ⟩ )

Proof

Step Hyp Ref Expression
1 ucnprima.1 ( 𝜑𝑈 ∈ ( UnifOn ‘ 𝑋 ) )
2 ucnprima.2 ( 𝜑𝑉 ∈ ( UnifOn ‘ 𝑌 ) )
3 ucnprima.3 ( 𝜑𝐹 ∈ ( 𝑈 Cnu 𝑉 ) )
4 ucnprima.4 ( 𝜑𝑊𝑉 )
5 ucnprima.5 𝐺 = ( 𝑥𝑋 , 𝑦𝑋 ↦ ⟨ ( 𝐹𝑥 ) , ( 𝐹𝑦 ) ⟩ )
6 vex 𝑥 ∈ V
7 vex 𝑦 ∈ V
8 6 7 op1std ( 𝑝 = ⟨ 𝑥 , 𝑦 ⟩ → ( 1st𝑝 ) = 𝑥 )
9 8 fveq2d ( 𝑝 = ⟨ 𝑥 , 𝑦 ⟩ → ( 𝐹 ‘ ( 1st𝑝 ) ) = ( 𝐹𝑥 ) )
10 6 7 op2ndd ( 𝑝 = ⟨ 𝑥 , 𝑦 ⟩ → ( 2nd𝑝 ) = 𝑦 )
11 10 fveq2d ( 𝑝 = ⟨ 𝑥 , 𝑦 ⟩ → ( 𝐹 ‘ ( 2nd𝑝 ) ) = ( 𝐹𝑦 ) )
12 9 11 opeq12d ( 𝑝 = ⟨ 𝑥 , 𝑦 ⟩ → ⟨ ( 𝐹 ‘ ( 1st𝑝 ) ) , ( 𝐹 ‘ ( 2nd𝑝 ) ) ⟩ = ⟨ ( 𝐹𝑥 ) , ( 𝐹𝑦 ) ⟩ )
13 12 mpompt ( 𝑝 ∈ ( 𝑋 × 𝑋 ) ↦ ⟨ ( 𝐹 ‘ ( 1st𝑝 ) ) , ( 𝐹 ‘ ( 2nd𝑝 ) ) ⟩ ) = ( 𝑥𝑋 , 𝑦𝑋 ↦ ⟨ ( 𝐹𝑥 ) , ( 𝐹𝑦 ) ⟩ )
14 5 13 eqtr4i 𝐺 = ( 𝑝 ∈ ( 𝑋 × 𝑋 ) ↦ ⟨ ( 𝐹 ‘ ( 1st𝑝 ) ) , ( 𝐹 ‘ ( 2nd𝑝 ) ) ⟩ )