Step |
Hyp |
Ref |
Expression |
1 |
|
usgredg2v.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
usgredg2v.e |
⊢ 𝐸 = ( iEdg ‘ 𝐺 ) |
3 |
1
|
fvexi |
⊢ 𝑉 ∈ V |
4 |
|
eqid |
⊢ { 𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑥 ) } = { 𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑥 ) } |
5 |
|
eqid |
⊢ ( 𝑦 ∈ { 𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑥 ) } ↦ ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑧 , 𝑁 } ) ) = ( 𝑦 ∈ { 𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑥 ) } ↦ ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑧 , 𝑁 } ) ) |
6 |
1 2 4 5
|
usgredg2v |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝑦 ∈ { 𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑥 ) } ↦ ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑧 , 𝑁 } ) ) : { 𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑥 ) } –1-1→ 𝑉 ) |
7 |
|
f1domg |
⊢ ( 𝑉 ∈ V → ( ( 𝑦 ∈ { 𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑥 ) } ↦ ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑧 , 𝑁 } ) ) : { 𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑥 ) } –1-1→ 𝑉 → { 𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑥 ) } ≼ 𝑉 ) ) |
8 |
3 6 7
|
mpsyl |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) → { 𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑥 ) } ≼ 𝑉 ) |
9 |
|
hashdomi |
⊢ ( { 𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑥 ) } ≼ 𝑉 → ( ♯ ‘ { 𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑥 ) } ) ≤ ( ♯ ‘ 𝑉 ) ) |
10 |
8 9
|
syl |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) → ( ♯ ‘ { 𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑥 ) } ) ≤ ( ♯ ‘ 𝑉 ) ) |