Metamath Proof Explorer


Theorem wl-euae

Description: Two ways to express "exactly one thing exists" . (Contributed by Wolf Lammen, 5-Mar-2023)

Ref Expression
Assertion wl-euae ( ∃! 𝑥 ⊤ ↔ ∀ 𝑥 𝑥 = 𝑦 )

Proof

Step Hyp Ref Expression
1 df-eu ( ∃! 𝑥 ⊤ ↔ ( ∃ 𝑥 ⊤ ∧ ∃* 𝑥 ⊤ ) )
2 extru 𝑥
3 2 biantrur ( ∃* 𝑥 ⊤ ↔ ( ∃ 𝑥 ⊤ ∧ ∃* 𝑥 ⊤ ) )
4 wl-moae ( ∃* 𝑥 ⊤ ↔ ∀ 𝑥 𝑥 = 𝑦 )
5 1 3 4 3bitr2i ( ∃! 𝑥 ⊤ ↔ ∀ 𝑥 𝑥 = 𝑦 )