Metamath Proof Explorer
		
		
		
		Description:  Closure of a structure index in a weak universe.  (Contributed by Mario Carneiro, 12-Jan-2017)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypotheses | 
						strfvss.e | 
						⊢ 𝐸  =  Slot  𝑁  | 
					
					
						 | 
						 | 
						wunstr.u | 
						⊢ ( 𝜑  →  𝑈  ∈  WUni )  | 
					
					
						 | 
						 | 
						wunstr.s | 
						⊢ ( 𝜑  →  𝑆  ∈  𝑈 )  | 
					
				
					 | 
					Assertion | 
					wunstr | 
					⊢  ( 𝜑  →  ( 𝐸 ‘ 𝑆 )  ∈  𝑈 )  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							strfvss.e | 
							⊢ 𝐸  =  Slot  𝑁  | 
						
						
							| 2 | 
							
								
							 | 
							wunstr.u | 
							⊢ ( 𝜑  →  𝑈  ∈  WUni )  | 
						
						
							| 3 | 
							
								
							 | 
							wunstr.s | 
							⊢ ( 𝜑  →  𝑆  ∈  𝑈 )  | 
						
						
							| 4 | 
							
								2 3
							 | 
							wunrn | 
							⊢ ( 𝜑  →  ran  𝑆  ∈  𝑈 )  | 
						
						
							| 5 | 
							
								2 4
							 | 
							wununi | 
							⊢ ( 𝜑  →  ∪  ran  𝑆  ∈  𝑈 )  | 
						
						
							| 6 | 
							
								1
							 | 
							strfvss | 
							⊢ ( 𝐸 ‘ 𝑆 )  ⊆  ∪  ran  𝑆  | 
						
						
							| 7 | 
							
								6
							 | 
							a1i | 
							⊢ ( 𝜑  →  ( 𝐸 ‘ 𝑆 )  ⊆  ∪  ran  𝑆 )  | 
						
						
							| 8 | 
							
								2 5 7
							 | 
							wunss | 
							⊢ ( 𝜑  →  ( 𝐸 ‘ 𝑆 )  ∈  𝑈 )  |