Description: Lemma 4 for wrd2f1tovbij . (Contributed by Alexander van der Vekens, 28-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wwlktovf1o.d | ⊢ 𝐷 = { 𝑤 ∈ Word 𝑉 ∣ ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑃 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ 𝑋 ) } | |
| wwlktovf1o.r | ⊢ 𝑅 = { 𝑛 ∈ 𝑉 ∣ { 𝑃 , 𝑛 } ∈ 𝑋 } | ||
| wwlktovf1o.f | ⊢ 𝐹 = ( 𝑡 ∈ 𝐷 ↦ ( 𝑡 ‘ 1 ) ) | ||
| Assertion | wwlktovf1o | ⊢ ( 𝑃 ∈ 𝑉 → 𝐹 : 𝐷 –1-1-onto→ 𝑅 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wwlktovf1o.d | ⊢ 𝐷 = { 𝑤 ∈ Word 𝑉 ∣ ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑃 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ 𝑋 ) } | |
| 2 | wwlktovf1o.r | ⊢ 𝑅 = { 𝑛 ∈ 𝑉 ∣ { 𝑃 , 𝑛 } ∈ 𝑋 } | |
| 3 | wwlktovf1o.f | ⊢ 𝐹 = ( 𝑡 ∈ 𝐷 ↦ ( 𝑡 ‘ 1 ) ) | |
| 4 | 1 2 3 | wwlktovf1 | ⊢ 𝐹 : 𝐷 –1-1→ 𝑅 |
| 5 | 4 | a1i | ⊢ ( 𝑃 ∈ 𝑉 → 𝐹 : 𝐷 –1-1→ 𝑅 ) |
| 6 | 1 2 3 | wwlktovfo | ⊢ ( 𝑃 ∈ 𝑉 → 𝐹 : 𝐷 –onto→ 𝑅 ) |
| 7 | df-f1o | ⊢ ( 𝐹 : 𝐷 –1-1-onto→ 𝑅 ↔ ( 𝐹 : 𝐷 –1-1→ 𝑅 ∧ 𝐹 : 𝐷 –onto→ 𝑅 ) ) | |
| 8 | 5 6 7 | sylanbrc | ⊢ ( 𝑃 ∈ 𝑉 → 𝐹 : 𝐷 –1-1-onto→ 𝑅 ) |