Metamath Proof Explorer


Theorem xaddid1d

Description: 0 is a right identity for extended real addition. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypothesis xaddid1d.1 ( 𝜑𝐴 ∈ ℝ* )
Assertion xaddid1d ( 𝜑 → ( 𝐴 +𝑒 0 ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 xaddid1d.1 ( 𝜑𝐴 ∈ ℝ* )
2 xaddid1 ( 𝐴 ∈ ℝ* → ( 𝐴 +𝑒 0 ) = 𝐴 )
3 1 2 syl ( 𝜑 → ( 𝐴 +𝑒 0 ) = 𝐴 )