Metamath Proof Explorer


Theorem xnegpnf

Description: Minus +oo . Remark of BourbakiTop1 p. IV.15. (Contributed by FL, 26-Dec-2011)

Ref Expression
Assertion xnegpnf -𝑒 +∞ = -∞

Proof

Step Hyp Ref Expression
1 df-xneg -𝑒 +∞ = if ( +∞ = +∞ , -∞ , if ( +∞ = -∞ , +∞ , - +∞ ) )
2 eqid +∞ = +∞
3 2 iftruei if ( +∞ = +∞ , -∞ , if ( +∞ = -∞ , +∞ , - +∞ ) ) = -∞
4 1 3 eqtri -𝑒 +∞ = -∞