Metamath Proof Explorer


Theorem zexpcld

Description: Closure of exponentiation of integers, deductive form. (Contributed by SN, 15-Sep-2024)

Ref Expression
Hypotheses zexpcld.1 ( 𝜑𝐴 ∈ ℤ )
zexpcld.2 ( 𝜑𝑁 ∈ ℕ0 )
Assertion zexpcld ( 𝜑 → ( 𝐴𝑁 ) ∈ ℤ )

Proof

Step Hyp Ref Expression
1 zexpcld.1 ( 𝜑𝐴 ∈ ℤ )
2 zexpcld.2 ( 𝜑𝑁 ∈ ℕ0 )
3 zexpcl ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴𝑁 ) ∈ ℤ )
4 1 2 3 syl2anc ( 𝜑 → ( 𝐴𝑁 ) ∈ ℤ )