Metamath Proof Explorer
Description: Closure of exponentiation of integers, deductive form. (Contributed by SN, 15-Sep-2024)
|
|
Ref |
Expression |
|
Hypotheses |
zexpcld.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℤ ) |
|
|
zexpcld.2 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
|
Assertion |
zexpcld |
⊢ ( 𝜑 → ( 𝐴 ↑ 𝑁 ) ∈ ℤ ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
zexpcld.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℤ ) |
2 |
|
zexpcld.2 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
3 |
|
zexpcl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑁 ) ∈ ℤ ) |
4 |
1 2 3
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ↑ 𝑁 ) ∈ ℤ ) |