Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifbieq12i | Unicode version |
Description: Equivalence deduction for conditional operators. (Contributed by NM, 18-Mar-2013.) |
Ref | Expression |
---|---|
ifbieq12i.1 | |
ifbieq12i.2 | |
ifbieq12i.3 |
Ref | Expression |
---|---|
ifbieq12i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifbieq12i.2 | . . 3 | |
2 | ifeq1 3945 | . . 3 | |
3 | 1, 2 | ax-mp 5 | . 2 |
4 | ifbieq12i.1 | . . 3 | |
5 | ifbieq12i.3 | . . 3 | |
6 | 4, 5 | ifbieq2i 3965 | . 2 |
7 | 3, 6 | eqtri 2486 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 = wceq 1395
if cif 3941 |
This theorem is referenced by: cbvditg 22258 sgnneg 28479 binomcxplemdvsum 31260 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-rab 2816 df-v 3111 df-un 3480 df-if 3942 |
Copyright terms: Public domain | W3C validator |