MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imbi12 Unicode version

Theorem imbi12 322
Description: Closed form of imbi12i 326. Was automatically derived from its "Virtual Deduction" version and Metamath's "minimize" command. (Contributed by Alan Sare, 18-Mar-2012.)
Assertion
Ref Expression
imbi12

Proof of Theorem imbi12
StepHypRef Expression
1 simplim 151 . . 3
2 simprim 150 . . 3
31, 2imbi12d 320 . 2
43expi 149 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4  <->wb 184
This theorem is referenced by:  imbi12i  326  imbi13  33290  imbi13VD  33674  sbcssgVD  33683  bj-imbi12  34170  bj-ifbi12  37702  bj-ifbi13  37703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185
  Copyright terms: Public domain W3C validator