Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imbi2 | Unicode version |
Description: Theorem *4.85 of [WhiteheadRussell] p. 122. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 19-May-2013.) |
Ref | Expression |
---|---|
imbi2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 | |
2 | 1 | imbi2d 316 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184 |
This theorem is referenced by: relexpindlem 29062 relexpind 29063 3impexpbicom 33221 sbcim2g 33309 3impexpbicomVD 33657 sbcim2gVD 33675 csbeq2gVD 33692 con5VD 33700 hbexgVD 33706 ax6e2ndeqVD 33709 2sb5ndVD 33710 ax6e2ndeqALT 33731 2sb5ndALT 33732 bj-ifbi2 37700 bj-ifbi3 37701 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 |
Copyright terms: Public domain | W3C validator |