MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imbi2 Unicode version

Theorem imbi2 324
Description: Theorem *4.85 of [WhiteheadRussell] p. 122. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 19-May-2013.)
Assertion
Ref Expression
imbi2

Proof of Theorem imbi2
StepHypRef Expression
1 id 22 . 2
21imbi2d 316 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184
This theorem is referenced by:  relexpindlem  29062  relexpind  29063  3impexpbicom  33221  sbcim2g  33309  3impexpbicomVD  33657  sbcim2gVD  33675  csbeq2gVD  33692  con5VD  33700  hbexgVD  33706  ax6e2ndeqVD  33709  2sb5ndVD  33710  ax6e2ndeqALT  33731  2sb5ndALT  33732  bj-ifbi2  37700  bj-ifbi3  37701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185
  Copyright terms: Public domain W3C validator