Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imbi1i | Unicode version |
Description: Introduce a consequent to both sides of a logical equivalence. (Contributed by NM, 3-Jan-1993.) (Proof shortened by Wolf Lammen, 17-Sep-2013.) |
Ref | Expression |
---|---|
imbi1i.1 |
Ref | Expression |
---|---|
imbi1i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbi1i.1 | . 2 | |
2 | imbi1 323 | . 2 | |
3 | 1, 2 | ax-mp 5 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184 |
This theorem is referenced by: imor 412 ancomst 452 ifpn 1391 eximal 1615 19.43 1693 19.37v 1768 19.37 1966 dfsb3 2115 sbrim 2137 sbor 2139 mo4f 2336 2mos 2375 neor 2781 r3al 2837 r3alOLD 2895 r19.23t 2935 r19.23v 2937 r19.43 3013 ceqsralt 3133 ralab 3260 ralrab 3261 euind 3286 reu2 3287 rmo4 3292 reuind 3303 2reu5lem3 3307 rmo3 3429 raldifb 3643 unss 3677 ralunb 3684 inssdif0 3895 ssundif 3911 dfif2 3943 pwss 4027 ralsnsg 4061 disjsn 4090 snss 4154 raldifsni 4160 raldifsnb 4161 unissb 4281 intun 4319 intpr 4320 dfiin2g 4363 disjor 4436 dftr2 4547 axrep1 4564 axpweq 4629 zfpow 4631 axpow2 4632 reusv2lem4 4656 reusv2 4658 reusv7OLD 4664 raliunxp 5147 asymref2 5389 dffun2 5603 dffun4 5605 dffun5 5606 dffun7 5619 fununi 5659 fvn0ssdmfun 6022 dff13 6166 dff14b 6178 zfun 6593 uniex2 6595 dfom2 6702 fimaxg 7787 fiint 7817 dfsup2 7922 oemapso 8122 scottexs 8326 scott0s 8327 iscard2 8378 acnnum 8454 dfac9 8537 dfacacn 8542 kmlem4 8554 kmlem12 8562 axpowndlem3 8996 axpowndlem3OLD 8997 zfcndun 9014 zfcndpow 9015 zfcndac 9018 axgroth5 9223 grothpw 9225 axgroth6 9227 addsrmo 9471 mulsrmo 9472 infm3 10527 raluz2 11159 nnwos 11178 ralrp 11267 lo1resb 13387 rlimresb 13388 o1resb 13389 modfsummod 13608 isprm4 14227 acsfn1 15058 acsfn2 15060 lublecllem 15618 isirred2 17350 isdomn2 17948 iunocv 18712 ist1-2 19848 isnrm2 19859 dfcon2 19920 alexsubALTlem3 20549 ismbl 21937 dyadmbllem 22008 ellimc3 22283 dchrelbas2 23512 dchrelbas3 23513 isch2 26141 choc0 26244 h1dei 26468 mdsl2i 27241 rmo3f 27394 rmo4fOLD 27395 rmo4f 27396 disjorf 27440 axextprim 29073 axunprim 29075 axpowprim 29076 untuni 29081 3orit 29092 biimpexp 29093 dfon2lem8 29222 predreseq 29259 soseq 29334 dfom5b 29562 wl-equsalcom 29995 tsim1 30537 fphpd 30750 dford4 30971 fnwe2lem2 30997 isdomn3 31164 pm14.12 31328 fsummulc1f 31569 dvmptmulf 31734 dvnmul 31740 dvmptfprodlem 31741 dvnprodlem2 31744 aacllem 33216 dfvd2an 33359 dfvd3 33368 dfvd3an 33371 uun2221 33610 uun2221p1 33611 uun2221p2 33612 bnj538OLD 33797 bnj1101 33843 bnj1109 33845 bnj1533 33910 bnj580 33971 bnj864 33980 bnj865 33981 bnj978 34007 bnj1049 34030 bnj1090 34035 bnj1145 34049 bj-axrep1 34374 bj-zfpow 34381 cvlsupr3 35069 pmapglbx 35493 isltrn2N 35844 cdlemefrs29bpre0 36122 bj-ifidg 37707 bj-ifid1g 37708 bj-ifor123g 37725 elintima 37765 cotr2g 37786 dfhe3 37799 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 |
Copyright terms: Public domain | W3C validator |