Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inssdif0 | Unicode version |
Description: Intersection, subclass, and difference relationship. (Contributed by NM, 27-Oct-1996.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) (Proof shortened by Wolf Lammen, 30-Sep-2014.) |
Ref | Expression |
---|---|
inssdif0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3686 | . . . . . 6 | |
2 | 1 | imbi1i 325 | . . . . 5 |
3 | iman 424 | . . . . 5 | |
4 | 2, 3 | bitri 249 | . . . 4 |
5 | eldif 3485 | . . . . . 6 | |
6 | 5 | anbi2i 694 | . . . . 5 |
7 | elin 3686 | . . . . 5 | |
8 | anass 649 | . . . . 5 | |
9 | 6, 7, 8 | 3bitr4ri 278 | . . . 4 |
10 | 4, 9 | xchbinx 310 | . . 3 |
11 | 10 | albii 1640 | . 2 |
12 | dfss2 3492 | . 2 | |
13 | eq0 3800 | . 2 | |
14 | 11, 12, 13 | 3bitr4i 277 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 A. wal 1393
= wceq 1395 e. wcel 1818 \ cdif 3472
i^i cin 3474 C_ wss 3475 c0 3784 |
This theorem is referenced by: disjdif 3900 inf3lem3 8068 ssfin4 8711 isnrm2 19859 1stccnp 19963 llycmpkgen2 20051 ufileu 20420 fclscf 20526 flimfnfcls 20529 inindif 27414 opnbnd 30143 diophrw 30692 setindtr 30966 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-v 3111 df-dif 3478 df-in 3482 df-ss 3489 df-nul 3785 |
Copyright terms: Public domain | W3C validator |