MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscard2 Unicode version

Theorem iscard2 8378
Description: Two ways to express the property of being a cardinal number. Definition 8 of [Suppes] p. 225. (Contributed by Mario Carneiro, 15-Jan-2013.)
Assertion
Ref Expression
iscard2
Distinct variable group:   ,

Proof of Theorem iscard2
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 cardon 8346 . . 3
2 eleq1 2529 . . 3
31, 2mpbii 211 . 2
4 cardonle 8359 . . . . . 6
54biantrurd 508 . . . . 5
6 eqss 3518 . . . . 5
75, 6syl6rbbr 264 . . . 4
8 oncardval 8357 . . . . 5
98sseq2d 3531 . . . 4
107, 9bitrd 253 . . 3
11 ssint 4302 . . . 4
12 breq1 4455 . . . . . . . . 9
1312elrab 3257 . . . . . . . 8
14 ensymb 7583 . . . . . . . . 9
1514anbi2i 694 . . . . . . . 8
1613, 15bitri 249 . . . . . . 7
1716imbi1i 325 . . . . . 6
18 impexp 446 . . . . . 6
1917, 18bitri 249 . . . . 5
2019ralbii2 2886 . . . 4
2111, 20bitri 249 . . 3
2210, 21syl6bb 261 . 2
233, 22biadan2 642 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  /\wa 369  =wceq 1395  e.wcel 1818  A.wral 2807  {crab 2811  C_wss 3475  |^|cint 4286   class class class wbr 4452   con0 4883  `cfv 5593   cen 7533   ccrd 8337
This theorem is referenced by:  harcard  8380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-8 1820  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pow 4630  ax-pr 4691  ax-un 6592
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-pss 3491  df-nul 3785  df-if 3942  df-pw 4014  df-sn 4030  df-pr 4032  df-tp 4034  df-op 4036  df-uni 4250  df-int 4287  df-br 4453  df-opab 4511  df-mpt 4512  df-tr 4546  df-eprel 4796  df-id 4800  df-po 4805  df-so 4806  df-fr 4843  df-we 4845  df-ord 4886  df-on 4887  df-xp 5010  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-rn 5015  df-res 5016  df-ima 5017  df-iota 5556  df-fun 5595  df-fn 5596  df-f 5597  df-f1 5598  df-fo 5599  df-f1o 5600  df-fv 5601  df-er 7330  df-en 7537  df-card 8341
  Copyright terms: Public domain W3C validator