Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > impexp | Unicode version |
Description: Import-export theorem. Part of Theorem *4.87 of [WhiteheadRussell] p. 122. (Contributed by NM, 10-Jan-1993.) (Proof shortened by Wolf Lammen, 24-Mar-2013.) |
Ref | Expression |
---|---|
impexp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.3 444 | . 2 | |
2 | pm3.31 445 | . 2 | |
3 | 1, 2 | impbii 188 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 |
This theorem is referenced by: pm4.14 578 nan 580 pm4.87 584 imp4a 589 exp4a 606 imdistan 689 pm5.3 711 pm5.6 912 2sb6 2188 2eu6OLD 2384 r2allem 2832 r2alfOLD 2834 r3al 2837 r3alOLD 2895 r19.23t 2935 ceqsralt 3133 ralrab 3261 ralrab2 3265 euind 3286 reu2 3287 reu3 3289 rmo4 3292 reuind 3303 2reu5lem3 3307 rmo2 3427 rmo3 3429 ralss 3565 rabss 3576 raldifb 3643 raldifsni 4160 unissb 4281 elintrab 4298 ssintrab 4310 dftr5 4548 axrep5 4568 reusv2lem4 4656 reusv2 4658 reusv3 4660 raliunxp 5147 fununi 5659 fvn0ssdmfun 6022 dff13 6166 ordunisuc2 6679 dfom2 6702 dfsmo2 7037 qliftfun 7415 dfsup2 7922 wemapsolem 7996 iscard2 8378 acnnum 8454 aceq1 8519 dfac9 8537 dfacacn 8542 axgroth6 9227 sstskm 9241 infm3 10527 prime 10968 raluz 11158 raluz2 11159 nnwos 11178 ralrp 11267 facwordi 12367 rexuzre 13185 limsupgle 13300 ello12 13339 elo12 13350 lo1resb 13387 rlimresb 13388 o1resb 13389 modfsummod 13608 isprm2 14225 isprm4 14227 acsfn2 15060 pgpfac1 17131 isirred2 17350 isdomn2 17948 coe1fzgsumd 18344 evl1gsumd 18393 islindf4 18873 ist1-2 19848 isnrm2 19859 dfcon2 19920 1stccn 19964 iskgen3 20050 hausdiag 20146 cnflf 20503 txflf 20507 cnfcf 20543 metcnp 21044 caucfil 21722 ovolgelb 21891 ismbl 21937 dyadmbllem 22008 itg2leub 22141 ellimc3 22283 mdegleb 22464 jensen 23318 dchrelbas2 23512 dchrelbas3 23513 nmoubi 25687 nmobndseqi 25694 nmobndseqiOLD 25695 h1dei 26468 nmopub 26827 nmfnleub 26844 mdsl1i 27240 mdsl2i 27241 elat2 27259 moel 27382 rmo3f 27394 rmo4fOLD 27395 eulerpartlemgvv 28315 climuzcnv 29037 axextprim 29073 biimpexp 29093 dfpo2 29184 dfon2lem8 29222 predreseq 29259 dffun10 29564 wl-2sb6d 30008 filnetlem4 30199 dford4 30971 fnwe2lem2 30997 isdomn3 31164 isprm7 31192 pm11.62 31300 2sbc6g 31322 2rexsb 32175 2rexrsb 32176 rmoanim 32184 rabsssn 32920 snlindsntor 33072 expcomdg 33269 impexpd 33283 dfvd2 33356 dfvd3 33368 bnj115 33778 bnj1109 33845 bnj1533 33910 bnj580 33971 bnj864 33980 bnj865 33981 bnj1049 34030 bnj1090 34035 bnj1093 34036 bnj1133 34045 bnj1171 34056 bj-axrep5 34378 isat3 35032 isltrn2N 35844 cdlemefrs29bpre0 36122 cdleme32fva 36163 bj-ifidg 37707 cotr2g 37786 dfhe3 37799 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-an 371 |
Copyright terms: Public domain | W3C validator |