MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imor Unicode version

Theorem imor 412
Description: Implication in terms of disjunction. Theorem *4.6 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-1993.)
Assertion
Ref Expression
imor

Proof of Theorem imor
StepHypRef Expression
1 notnot 291 . . 3
21imbi1i 325 . 2
3 df-or 370 . 2
42, 3bitr4i 252 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4  <->wb 184  \/wo 368
This theorem is referenced by:  imori  413  imorri  414  pm4.62  419  pm4.52  491  pm4.78  582  dfifp4  1384  dfifp5  1385  dfifp7  1387  rb-bijust  1582  rb-imdf  1583  rb-ax1  1585  nf4  1962  r19.30  3002  soxp  6913  modom  7740  dffin7-2  8799  algcvgblem  14206  divgcdodd  14260  chrelat2i  27284  disjex  27451  disjexc  27452  meran1  29876  meran3  29878  itg2addnclem2  30067  dvasin  30103  impor  30478  biimpor  30481  stoweidlem14  31796  alimp-surprise  33195  eximp-surprise  33199  hbimpgVD  33704  bj-dfbi5  34155  bj-andnotim  34177  bj-nf2  34196  hlrelat2  35127  bj-ifim123g  37706  bj-ifidg  37707  bj-ifim1  37712  bj-ifim2  37713  bj-ifimimb  37715  bj-ifororb  37726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-or 370
  Copyright terms: Public domain W3C validator