MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifpn Unicode version

Theorem ifpn 1391
Description: Conditional operator for the negation of a proposition. (Contributed by BJ, 30-Sep-2019.)
Assertion
Ref Expression
ifpn

Proof of Theorem ifpn
StepHypRef Expression
1 notnot 291 . . . 4
21imbi1i 325 . . 3
32anbi2ci 696 . 2
4 dfifp2 1382 . 2
5 dfifp2 1382 . 2
63, 4, 53bitr4i 277 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4  <->wb 184  /\wa 369  if-wif 1380
This theorem is referenced by:  bj-ifdfbi  37730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-ifp 1381
  Copyright terms: Public domain W3C validator