Description: Conditional operator for the negation of a proposition. (Contributed by BJ, 30-Sep-2019) (Proof shortened by Wolf Lammen, 5-May-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | ifpn | ⊢ ( if- ( 𝜑 , 𝜓 , 𝜒 ) ↔ if- ( ¬ 𝜑 , 𝜒 , 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom | ⊢ ( ( ( ¬ 𝜑 ∨ 𝜓 ) ∧ ( ¬ 𝜑 → 𝜒 ) ) ↔ ( ( ¬ 𝜑 → 𝜒 ) ∧ ( ¬ 𝜑 ∨ 𝜓 ) ) ) | |
2 | dfifp5 | ⊢ ( if- ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( ¬ 𝜑 ∨ 𝜓 ) ∧ ( ¬ 𝜑 → 𝜒 ) ) ) | |
3 | dfifp3 | ⊢ ( if- ( ¬ 𝜑 , 𝜒 , 𝜓 ) ↔ ( ( ¬ 𝜑 → 𝜒 ) ∧ ( ¬ 𝜑 ∨ 𝜓 ) ) ) | |
4 | 1 2 3 | 3bitr4i | ⊢ ( if- ( 𝜑 , 𝜓 , 𝜒 ) ↔ if- ( ¬ 𝜑 , 𝜒 , 𝜓 ) ) |