Metamath Proof Explorer


Theorem ifpnOLD

Description: Obsolete version of ifpn as of 5-May-2024. (Contributed by BJ, 30-Sep-2019) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion ifpnOLD ( if- ( 𝜑 , 𝜓 , 𝜒 ) ↔ if- ( ¬ 𝜑 , 𝜒 , 𝜓 ) )

Proof

Step Hyp Ref Expression
1 notnotb ( 𝜑 ↔ ¬ ¬ 𝜑 )
2 1 imbi1i ( ( 𝜑𝜓 ) ↔ ( ¬ ¬ 𝜑𝜓 ) )
3 2 anbi2ci ( ( ( 𝜑𝜓 ) ∧ ( ¬ 𝜑𝜒 ) ) ↔ ( ( ¬ 𝜑𝜒 ) ∧ ( ¬ ¬ 𝜑𝜓 ) ) )
4 dfifp2 ( if- ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜑𝜓 ) ∧ ( ¬ 𝜑𝜒 ) ) )
5 dfifp2 ( if- ( ¬ 𝜑 , 𝜒 , 𝜓 ) ↔ ( ( ¬ 𝜑𝜒 ) ∧ ( ¬ ¬ 𝜑𝜓 ) ) )
6 3 4 5 3bitr4i ( if- ( 𝜑 , 𝜓 , 𝜒 ) ↔ if- ( ¬ 𝜑 , 𝜒 , 𝜓 ) )