Metamath Proof Explorer


Theorem ifpn

Description: Conditional operator for the negation of a proposition. (Contributed by BJ, 30-Sep-2019) (Proof shortened by Wolf Lammen, 5-May-2024)

Ref Expression
Assertion ifpn ( if- ( 𝜑 , 𝜓 , 𝜒 ) ↔ if- ( ¬ 𝜑 , 𝜒 , 𝜓 ) )

Proof

Step Hyp Ref Expression
1 ancom ( ( ( ¬ 𝜑𝜓 ) ∧ ( ¬ 𝜑𝜒 ) ) ↔ ( ( ¬ 𝜑𝜒 ) ∧ ( ¬ 𝜑𝜓 ) ) )
2 dfifp5 ( if- ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( ¬ 𝜑𝜓 ) ∧ ( ¬ 𝜑𝜒 ) ) )
3 dfifp3 ( if- ( ¬ 𝜑 , 𝜒 , 𝜓 ) ↔ ( ( ¬ 𝜑𝜒 ) ∧ ( ¬ 𝜑𝜓 ) ) )
4 1 2 3 3bitr4i ( if- ( 𝜑 , 𝜓 , 𝜒 ) ↔ if- ( ¬ 𝜑 , 𝜒 , 𝜓 ) )