MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imim1 Unicode version

Theorem imim1 76
Description: A closed form of syllogism (see syl 16). Theorem *2.06 of [WhiteheadRussell] p. 100. (Contributed by NM, 29-Dec-1992.) (Proof shortened by Wolf Lammen, 25-May-2013.)
Assertion
Ref Expression
imim1

Proof of Theorem imim1
StepHypRef Expression
1 id 22 . 2
21imim1d 75 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4
This theorem is referenced by:  pm2.83  77  looinv  182  pm3.33  585  tbw-ax1  1533  moim  2339  intssOLD  4308  mrcmndind  15997  tb-ax1  29844  al2imVD  33662  syl5impVD  33663  hbimpgVD  33704  hbalgVD  33705  ax6e2ndeqVD  33709  2sb5ndVD  33710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
  Copyright terms: Public domain W3C validator