Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > intssOLD | Unicode version |
Description: Intersection of subclasses. (Contributed by NM, 14-Oct-1999.) Obsolete version of intss 4307 as of 25-Mar-2020. (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
intssOLD |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imim1 76 | . . . . 5 | |
2 | 1 | al2imi 1636 | . . . 4 |
3 | vex 3112 | . . . . 5 | |
4 | 3 | elint 4292 | . . . 4 |
5 | 3 | elint 4292 | . . . 4 |
6 | 2, 4, 5 | 3imtr4g 270 | . . 3 |
7 | 6 | alrimiv 1719 | . 2 |
8 | dfss2 3492 | . 2 | |
9 | dfss2 3492 | . 2 | |
10 | 7, 8, 9 | 3imtr4i 266 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 A. wal 1393
e. wcel 1818 C_ wss 3475 |^| cint 4286 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 df-in 3482 df-ss 3489 df-int 4287 |
Copyright terms: Public domain | W3C validator |