MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intssOLD Unicode version

Theorem intssOLD 4308
Description: Intersection of subclasses. (Contributed by NM, 14-Oct-1999.) Obsolete version of intss 4307 as of 25-Mar-2020. (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
intssOLD

Proof of Theorem intssOLD
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imim1 76 . . . . 5
21al2imi 1636 . . . 4
3 vex 3112 . . . . 5
43elint 4292 . . . 4
53elint 4292 . . . 4
62, 4, 53imtr4g 270 . . 3
76alrimiv 1719 . 2
8 dfss2 3492 . 2
9 dfss2 3492 . 2
107, 8, 93imtr4i 266 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  A.wal 1393  e.wcel 1818  C_wss 3475  |^|cint 4286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-v 3111  df-in 3482  df-ss 3489  df-int 4287
  Copyright terms: Public domain W3C validator