Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  issetri Unicode version

Theorem issetri 3116
 Description: A way to say " is a set" (inference rule). (Contributed by NM, 21-Jun-1993.)
Hypothesis
Ref Expression
issetri.1
Assertion
Ref Expression
issetri
Distinct variable group:   ,

Proof of Theorem issetri
StepHypRef Expression
1 issetri.1 . 2
2 isset 3113 . 2
31, 2mpbir 209 1
 Colors of variables: wff setvar class Syntax hints:  =wceq 1395  E.wex 1612  e.wcel 1818   cvv 3109 This theorem is referenced by:  zfrep4  4571  0ex  4582  inex1  4593  pwex  4635  zfpair2  4692  uniex  6596  bj-snsetex  34521 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-12 1854  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1613  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-v 3111
 Copyright terms: Public domain W3C validator