Description: The zero of the ring of all polynomial matrices over the ring R is a constant polynomial matrix. (Contributed by AV, 27-Nov-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 0elcpmat.s | |- S = ( N ConstPolyMat R ) |
|
| 0elcpmat.p | |- P = ( Poly1 ` R ) |
||
| 0elcpmat.c | |- C = ( N Mat P ) |
||
| Assertion | 0elcpmat | |- ( ( N e. Fin /\ R e. Ring ) -> ( 0g ` C ) e. S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0elcpmat.s | |- S = ( N ConstPolyMat R ) |
|
| 2 | 0elcpmat.p | |- P = ( Poly1 ` R ) |
|
| 3 | 0elcpmat.c | |- C = ( N Mat P ) |
|
| 4 | 1 2 3 | cpmatsubgpmat | |- ( ( N e. Fin /\ R e. Ring ) -> S e. ( SubGrp ` C ) ) |
| 5 | eqid | |- ( 0g ` C ) = ( 0g ` C ) |
|
| 6 | 5 | subg0cl | |- ( S e. ( SubGrp ` C ) -> ( 0g ` C ) e. S ) |
| 7 | 4 6 | syl | |- ( ( N e. Fin /\ R e. Ring ) -> ( 0g ` C ) e. S ) |