Step |
Hyp |
Ref |
Expression |
1 |
|
mat2pmatfval.t |
|- T = ( N matToPolyMat R ) |
2 |
|
mat2pmatfval.a |
|- A = ( N Mat R ) |
3 |
|
mat2pmatfval.b |
|- B = ( Base ` A ) |
4 |
|
mat2pmatfval.p |
|- P = ( Poly1 ` R ) |
5 |
|
mat2pmatfval.s |
|- S = ( algSc ` P ) |
6 |
|
df-mat2pmat |
|- matToPolyMat = ( n e. Fin , r e. _V |-> ( m e. ( Base ` ( n Mat r ) ) |-> ( x e. n , y e. n |-> ( ( algSc ` ( Poly1 ` r ) ) ` ( x m y ) ) ) ) ) |
7 |
6
|
a1i |
|- ( ( N e. Fin /\ R e. V ) -> matToPolyMat = ( n e. Fin , r e. _V |-> ( m e. ( Base ` ( n Mat r ) ) |-> ( x e. n , y e. n |-> ( ( algSc ` ( Poly1 ` r ) ) ` ( x m y ) ) ) ) ) ) |
8 |
|
oveq12 |
|- ( ( n = N /\ r = R ) -> ( n Mat r ) = ( N Mat R ) ) |
9 |
8
|
fveq2d |
|- ( ( n = N /\ r = R ) -> ( Base ` ( n Mat r ) ) = ( Base ` ( N Mat R ) ) ) |
10 |
2
|
fveq2i |
|- ( Base ` A ) = ( Base ` ( N Mat R ) ) |
11 |
3 10
|
eqtr2i |
|- ( Base ` ( N Mat R ) ) = B |
12 |
9 11
|
eqtrdi |
|- ( ( n = N /\ r = R ) -> ( Base ` ( n Mat r ) ) = B ) |
13 |
|
simpl |
|- ( ( n = N /\ r = R ) -> n = N ) |
14 |
|
2fveq3 |
|- ( r = R -> ( algSc ` ( Poly1 ` r ) ) = ( algSc ` ( Poly1 ` R ) ) ) |
15 |
14
|
adantl |
|- ( ( n = N /\ r = R ) -> ( algSc ` ( Poly1 ` r ) ) = ( algSc ` ( Poly1 ` R ) ) ) |
16 |
4
|
fveq2i |
|- ( algSc ` P ) = ( algSc ` ( Poly1 ` R ) ) |
17 |
5 16
|
eqtr2i |
|- ( algSc ` ( Poly1 ` R ) ) = S |
18 |
15 17
|
eqtrdi |
|- ( ( n = N /\ r = R ) -> ( algSc ` ( Poly1 ` r ) ) = S ) |
19 |
18
|
fveq1d |
|- ( ( n = N /\ r = R ) -> ( ( algSc ` ( Poly1 ` r ) ) ` ( x m y ) ) = ( S ` ( x m y ) ) ) |
20 |
13 13 19
|
mpoeq123dv |
|- ( ( n = N /\ r = R ) -> ( x e. n , y e. n |-> ( ( algSc ` ( Poly1 ` r ) ) ` ( x m y ) ) ) = ( x e. N , y e. N |-> ( S ` ( x m y ) ) ) ) |
21 |
12 20
|
mpteq12dv |
|- ( ( n = N /\ r = R ) -> ( m e. ( Base ` ( n Mat r ) ) |-> ( x e. n , y e. n |-> ( ( algSc ` ( Poly1 ` r ) ) ` ( x m y ) ) ) ) = ( m e. B |-> ( x e. N , y e. N |-> ( S ` ( x m y ) ) ) ) ) |
22 |
21
|
adantl |
|- ( ( ( N e. Fin /\ R e. V ) /\ ( n = N /\ r = R ) ) -> ( m e. ( Base ` ( n Mat r ) ) |-> ( x e. n , y e. n |-> ( ( algSc ` ( Poly1 ` r ) ) ` ( x m y ) ) ) ) = ( m e. B |-> ( x e. N , y e. N |-> ( S ` ( x m y ) ) ) ) ) |
23 |
|
simpl |
|- ( ( N e. Fin /\ R e. V ) -> N e. Fin ) |
24 |
|
elex |
|- ( R e. V -> R e. _V ) |
25 |
24
|
adantl |
|- ( ( N e. Fin /\ R e. V ) -> R e. _V ) |
26 |
3
|
fvexi |
|- B e. _V |
27 |
|
mptexg |
|- ( B e. _V -> ( m e. B |-> ( x e. N , y e. N |-> ( S ` ( x m y ) ) ) ) e. _V ) |
28 |
26 27
|
mp1i |
|- ( ( N e. Fin /\ R e. V ) -> ( m e. B |-> ( x e. N , y e. N |-> ( S ` ( x m y ) ) ) ) e. _V ) |
29 |
7 22 23 25 28
|
ovmpod |
|- ( ( N e. Fin /\ R e. V ) -> ( N matToPolyMat R ) = ( m e. B |-> ( x e. N , y e. N |-> ( S ` ( x m y ) ) ) ) ) |
30 |
1 29
|
eqtrid |
|- ( ( N e. Fin /\ R e. V ) -> T = ( m e. B |-> ( x e. N , y e. N |-> ( S ` ( x m y ) ) ) ) ) |