Step |
Hyp |
Ref |
Expression |
1 |
|
mat2pmatfval.t |
⊢ 𝑇 = ( 𝑁 matToPolyMat 𝑅 ) |
2 |
|
mat2pmatfval.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
3 |
|
mat2pmatfval.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
4 |
|
mat2pmatfval.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
5 |
|
mat2pmatfval.s |
⊢ 𝑆 = ( algSc ‘ 𝑃 ) |
6 |
|
df-mat2pmat |
⊢ matToPolyMat = ( 𝑛 ∈ Fin , 𝑟 ∈ V ↦ ( 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ↦ ( 𝑥 ∈ 𝑛 , 𝑦 ∈ 𝑛 ↦ ( ( algSc ‘ ( Poly1 ‘ 𝑟 ) ) ‘ ( 𝑥 𝑚 𝑦 ) ) ) ) ) |
7 |
6
|
a1i |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → matToPolyMat = ( 𝑛 ∈ Fin , 𝑟 ∈ V ↦ ( 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ↦ ( 𝑥 ∈ 𝑛 , 𝑦 ∈ 𝑛 ↦ ( ( algSc ‘ ( Poly1 ‘ 𝑟 ) ) ‘ ( 𝑥 𝑚 𝑦 ) ) ) ) ) ) |
8 |
|
oveq12 |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( 𝑛 Mat 𝑟 ) = ( 𝑁 Mat 𝑅 ) ) |
9 |
8
|
fveq2d |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( Base ‘ ( 𝑛 Mat 𝑟 ) ) = ( Base ‘ ( 𝑁 Mat 𝑅 ) ) ) |
10 |
2
|
fveq2i |
⊢ ( Base ‘ 𝐴 ) = ( Base ‘ ( 𝑁 Mat 𝑅 ) ) |
11 |
3 10
|
eqtr2i |
⊢ ( Base ‘ ( 𝑁 Mat 𝑅 ) ) = 𝐵 |
12 |
9 11
|
eqtrdi |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( Base ‘ ( 𝑛 Mat 𝑟 ) ) = 𝐵 ) |
13 |
|
simpl |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → 𝑛 = 𝑁 ) |
14 |
|
2fveq3 |
⊢ ( 𝑟 = 𝑅 → ( algSc ‘ ( Poly1 ‘ 𝑟 ) ) = ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ) |
15 |
14
|
adantl |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( algSc ‘ ( Poly1 ‘ 𝑟 ) ) = ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ) |
16 |
4
|
fveq2i |
⊢ ( algSc ‘ 𝑃 ) = ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) |
17 |
5 16
|
eqtr2i |
⊢ ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) = 𝑆 |
18 |
15 17
|
eqtrdi |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( algSc ‘ ( Poly1 ‘ 𝑟 ) ) = 𝑆 ) |
19 |
18
|
fveq1d |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( ( algSc ‘ ( Poly1 ‘ 𝑟 ) ) ‘ ( 𝑥 𝑚 𝑦 ) ) = ( 𝑆 ‘ ( 𝑥 𝑚 𝑦 ) ) ) |
20 |
13 13 19
|
mpoeq123dv |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( 𝑥 ∈ 𝑛 , 𝑦 ∈ 𝑛 ↦ ( ( algSc ‘ ( Poly1 ‘ 𝑟 ) ) ‘ ( 𝑥 𝑚 𝑦 ) ) ) = ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ ( 𝑆 ‘ ( 𝑥 𝑚 𝑦 ) ) ) ) |
21 |
12 20
|
mpteq12dv |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ↦ ( 𝑥 ∈ 𝑛 , 𝑦 ∈ 𝑛 ↦ ( ( algSc ‘ ( Poly1 ‘ 𝑟 ) ) ‘ ( 𝑥 𝑚 𝑦 ) ) ) ) = ( 𝑚 ∈ 𝐵 ↦ ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ ( 𝑆 ‘ ( 𝑥 𝑚 𝑦 ) ) ) ) ) |
22 |
21
|
adantl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) ∧ ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) ) → ( 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ↦ ( 𝑥 ∈ 𝑛 , 𝑦 ∈ 𝑛 ↦ ( ( algSc ‘ ( Poly1 ‘ 𝑟 ) ) ‘ ( 𝑥 𝑚 𝑦 ) ) ) ) = ( 𝑚 ∈ 𝐵 ↦ ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ ( 𝑆 ‘ ( 𝑥 𝑚 𝑦 ) ) ) ) ) |
23 |
|
simpl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → 𝑁 ∈ Fin ) |
24 |
|
elex |
⊢ ( 𝑅 ∈ 𝑉 → 𝑅 ∈ V ) |
25 |
24
|
adantl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → 𝑅 ∈ V ) |
26 |
3
|
fvexi |
⊢ 𝐵 ∈ V |
27 |
|
mptexg |
⊢ ( 𝐵 ∈ V → ( 𝑚 ∈ 𝐵 ↦ ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ ( 𝑆 ‘ ( 𝑥 𝑚 𝑦 ) ) ) ) ∈ V ) |
28 |
26 27
|
mp1i |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → ( 𝑚 ∈ 𝐵 ↦ ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ ( 𝑆 ‘ ( 𝑥 𝑚 𝑦 ) ) ) ) ∈ V ) |
29 |
7 22 23 25 28
|
ovmpod |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → ( 𝑁 matToPolyMat 𝑅 ) = ( 𝑚 ∈ 𝐵 ↦ ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ ( 𝑆 ‘ ( 𝑥 𝑚 𝑦 ) ) ) ) ) |
30 |
1 29
|
eqtrid |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → 𝑇 = ( 𝑚 ∈ 𝐵 ↦ ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ ( 𝑆 ‘ ( 𝑥 𝑚 𝑦 ) ) ) ) ) |