Description: The whole group and the zero subgroup are normal subgroups of a group. (Contributed by Rohan Ridenour, 3-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 0idnsgd.1 | |- B = ( Base ` G ) |
|
0idnsgd.2 | |- .0. = ( 0g ` G ) |
||
0idnsgd.3 | |- ( ph -> G e. Grp ) |
||
Assertion | 0idnsgd | |- ( ph -> { { .0. } , B } C_ ( NrmSGrp ` G ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0idnsgd.1 | |- B = ( Base ` G ) |
|
2 | 0idnsgd.2 | |- .0. = ( 0g ` G ) |
|
3 | 0idnsgd.3 | |- ( ph -> G e. Grp ) |
|
4 | 2 | 0nsg | |- ( G e. Grp -> { .0. } e. ( NrmSGrp ` G ) ) |
5 | 3 4 | syl | |- ( ph -> { .0. } e. ( NrmSGrp ` G ) ) |
6 | 1 | nsgid | |- ( G e. Grp -> B e. ( NrmSGrp ` G ) ) |
7 | 3 6 | syl | |- ( ph -> B e. ( NrmSGrp ` G ) ) |
8 | 5 7 | prssd | |- ( ph -> { { .0. } , B } C_ ( NrmSGrp ` G ) ) |