Metamath Proof Explorer


Theorem 0idnsgd

Description: The whole group and the zero subgroup are normal subgroups of a group. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses 0idnsgd.1
|- B = ( Base ` G )
0idnsgd.2
|- .0. = ( 0g ` G )
0idnsgd.3
|- ( ph -> G e. Grp )
Assertion 0idnsgd
|- ( ph -> { { .0. } , B } C_ ( NrmSGrp ` G ) )

Proof

Step Hyp Ref Expression
1 0idnsgd.1
 |-  B = ( Base ` G )
2 0idnsgd.2
 |-  .0. = ( 0g ` G )
3 0idnsgd.3
 |-  ( ph -> G e. Grp )
4 2 0nsg
 |-  ( G e. Grp -> { .0. } e. ( NrmSGrp ` G ) )
5 3 4 syl
 |-  ( ph -> { .0. } e. ( NrmSGrp ` G ) )
6 1 nsgid
 |-  ( G e. Grp -> B e. ( NrmSGrp ` G ) )
7 3 6 syl
 |-  ( ph -> B e. ( NrmSGrp ` G ) )
8 5 7 prssd
 |-  ( ph -> { { .0. } , B } C_ ( NrmSGrp ` G ) )