Description: The whole group and the zero subgroup are normal subgroups of a group. (Contributed by Rohan Ridenour, 3-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 0idnsgd.1 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 0idnsgd.2 | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| 0idnsgd.3 | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | ||
| Assertion | 0idnsgd | ⊢ ( 𝜑 → { { 0 } , 𝐵 } ⊆ ( NrmSGrp ‘ 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0idnsgd.1 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | 0idnsgd.2 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | 0idnsgd.3 | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | |
| 4 | 2 | 0nsg | ⊢ ( 𝐺 ∈ Grp → { 0 } ∈ ( NrmSGrp ‘ 𝐺 ) ) |
| 5 | 3 4 | syl | ⊢ ( 𝜑 → { 0 } ∈ ( NrmSGrp ‘ 𝐺 ) ) |
| 6 | 1 | nsgid | ⊢ ( 𝐺 ∈ Grp → 𝐵 ∈ ( NrmSGrp ‘ 𝐺 ) ) |
| 7 | 3 6 | syl | ⊢ ( 𝜑 → 𝐵 ∈ ( NrmSGrp ‘ 𝐺 ) ) |
| 8 | 5 7 | prssd | ⊢ ( 𝜑 → { { 0 } , 𝐵 } ⊆ ( NrmSGrp ‘ 𝐺 ) ) |