Metamath Proof Explorer


Theorem nsgid

Description: The whole group is a normal subgroup of itself. (Contributed by Mario Carneiro, 4-Feb-2015)

Ref Expression
Hypothesis nsgid.z 𝐵 = ( Base ‘ 𝐺 )
Assertion nsgid ( 𝐺 ∈ Grp → 𝐵 ∈ ( NrmSGrp ‘ 𝐺 ) )

Proof

Step Hyp Ref Expression
1 nsgid.z 𝐵 = ( Base ‘ 𝐺 )
2 1 subgid ( 𝐺 ∈ Grp → 𝐵 ∈ ( SubGrp ‘ 𝐺 ) )
3 simp1 ( ( 𝐺 ∈ Grp ∧ 𝑥𝐵𝑦𝐵 ) → 𝐺 ∈ Grp )
4 eqid ( +g𝐺 ) = ( +g𝐺 )
5 1 4 grpcl ( ( 𝐺 ∈ Grp ∧ 𝑥𝐵𝑦𝐵 ) → ( 𝑥 ( +g𝐺 ) 𝑦 ) ∈ 𝐵 )
6 simp2 ( ( 𝐺 ∈ Grp ∧ 𝑥𝐵𝑦𝐵 ) → 𝑥𝐵 )
7 eqid ( -g𝐺 ) = ( -g𝐺 )
8 1 7 grpsubcl ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ( +g𝐺 ) 𝑦 ) ∈ 𝐵𝑥𝐵 ) → ( ( 𝑥 ( +g𝐺 ) 𝑦 ) ( -g𝐺 ) 𝑥 ) ∈ 𝐵 )
9 3 5 6 8 syl3anc ( ( 𝐺 ∈ Grp ∧ 𝑥𝐵𝑦𝐵 ) → ( ( 𝑥 ( +g𝐺 ) 𝑦 ) ( -g𝐺 ) 𝑥 ) ∈ 𝐵 )
10 9 3expb ( ( 𝐺 ∈ Grp ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( ( 𝑥 ( +g𝐺 ) 𝑦 ) ( -g𝐺 ) 𝑥 ) ∈ 𝐵 )
11 10 ralrimivva ( 𝐺 ∈ Grp → ∀ 𝑥𝐵𝑦𝐵 ( ( 𝑥 ( +g𝐺 ) 𝑦 ) ( -g𝐺 ) 𝑥 ) ∈ 𝐵 )
12 1 4 7 isnsg3 ( 𝐵 ∈ ( NrmSGrp ‘ 𝐺 ) ↔ ( 𝐵 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥𝐵𝑦𝐵 ( ( 𝑥 ( +g𝐺 ) 𝑦 ) ( -g𝐺 ) 𝑥 ) ∈ 𝐵 ) )
13 2 11 12 sylanbrc ( 𝐺 ∈ Grp → 𝐵 ∈ ( NrmSGrp ‘ 𝐺 ) )