Step |
Hyp |
Ref |
Expression |
1 |
|
isnsg3.1 |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
2 |
|
isnsg3.2 |
⊢ + = ( +g ‘ 𝐺 ) |
3 |
|
isnsg3.3 |
⊢ − = ( -g ‘ 𝐺 ) |
4 |
|
nsgsubg |
⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) |
5 |
1 2 3
|
nsgconj |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝑥 + 𝑦 ) − 𝑥 ) ∈ 𝑆 ) |
6 |
5
|
3expb |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑆 ) ) → ( ( 𝑥 + 𝑦 ) − 𝑥 ) ∈ 𝑆 ) |
7 |
6
|
ralrimivva |
⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑆 ( ( 𝑥 + 𝑦 ) − 𝑥 ) ∈ 𝑆 ) |
8 |
4 7
|
jca |
⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑆 ( ( 𝑥 + 𝑦 ) − 𝑥 ) ∈ 𝑆 ) ) |
9 |
|
simpl |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑆 ( ( 𝑥 + 𝑦 ) − 𝑥 ) ∈ 𝑆 ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) |
10 |
|
subgrcl |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) |
11 |
10
|
ad2antrr |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑆 ( ( 𝑥 + 𝑦 ) − 𝑥 ) ∈ 𝑆 ) ∧ ( ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ∧ ( 𝑧 + 𝑤 ) ∈ 𝑆 ) ) → 𝐺 ∈ Grp ) |
12 |
|
simprll |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑆 ( ( 𝑥 + 𝑦 ) − 𝑥 ) ∈ 𝑆 ) ∧ ( ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ∧ ( 𝑧 + 𝑤 ) ∈ 𝑆 ) ) → 𝑧 ∈ 𝑋 ) |
13 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
14 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
15 |
1 2 13 14
|
grplinv |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + 𝑧 ) = ( 0g ‘ 𝐺 ) ) |
16 |
11 12 15
|
syl2anc |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑆 ( ( 𝑥 + 𝑦 ) − 𝑥 ) ∈ 𝑆 ) ∧ ( ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ∧ ( 𝑧 + 𝑤 ) ∈ 𝑆 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + 𝑧 ) = ( 0g ‘ 𝐺 ) ) |
17 |
16
|
oveq1d |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑆 ( ( 𝑥 + 𝑦 ) − 𝑥 ) ∈ 𝑆 ) ∧ ( ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ∧ ( 𝑧 + 𝑤 ) ∈ 𝑆 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + 𝑧 ) + 𝑤 ) = ( ( 0g ‘ 𝐺 ) + 𝑤 ) ) |
18 |
1 14
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ∈ 𝑋 ) |
19 |
11 12 18
|
syl2anc |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑆 ( ( 𝑥 + 𝑦 ) − 𝑥 ) ∈ 𝑆 ) ∧ ( ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ∧ ( 𝑧 + 𝑤 ) ∈ 𝑆 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ∈ 𝑋 ) |
20 |
|
simprlr |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑆 ( ( 𝑥 + 𝑦 ) − 𝑥 ) ∈ 𝑆 ) ∧ ( ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ∧ ( 𝑧 + 𝑤 ) ∈ 𝑆 ) ) → 𝑤 ∈ 𝑋 ) |
21 |
1 2
|
grpass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + 𝑧 ) + 𝑤 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + ( 𝑧 + 𝑤 ) ) ) |
22 |
11 19 12 20 21
|
syl13anc |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑆 ( ( 𝑥 + 𝑦 ) − 𝑥 ) ∈ 𝑆 ) ∧ ( ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ∧ ( 𝑧 + 𝑤 ) ∈ 𝑆 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + 𝑧 ) + 𝑤 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + ( 𝑧 + 𝑤 ) ) ) |
23 |
1 2 13
|
grplid |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑤 ∈ 𝑋 ) → ( ( 0g ‘ 𝐺 ) + 𝑤 ) = 𝑤 ) |
24 |
11 20 23
|
syl2anc |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑆 ( ( 𝑥 + 𝑦 ) − 𝑥 ) ∈ 𝑆 ) ∧ ( ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ∧ ( 𝑧 + 𝑤 ) ∈ 𝑆 ) ) → ( ( 0g ‘ 𝐺 ) + 𝑤 ) = 𝑤 ) |
25 |
17 22 24
|
3eqtr3d |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑆 ( ( 𝑥 + 𝑦 ) − 𝑥 ) ∈ 𝑆 ) ∧ ( ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ∧ ( 𝑧 + 𝑤 ) ∈ 𝑆 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + ( 𝑧 + 𝑤 ) ) = 𝑤 ) |
26 |
25
|
oveq1d |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑆 ( ( 𝑥 + 𝑦 ) − 𝑥 ) ∈ 𝑆 ) ∧ ( ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ∧ ( 𝑧 + 𝑤 ) ∈ 𝑆 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + ( 𝑧 + 𝑤 ) ) − ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) = ( 𝑤 − ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) |
27 |
1 2 3 14 11 20 12
|
grpsubinv |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑆 ( ( 𝑥 + 𝑦 ) − 𝑥 ) ∈ 𝑆 ) ∧ ( ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ∧ ( 𝑧 + 𝑤 ) ∈ 𝑆 ) ) → ( 𝑤 − ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) = ( 𝑤 + 𝑧 ) ) |
28 |
26 27
|
eqtrd |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑆 ( ( 𝑥 + 𝑦 ) − 𝑥 ) ∈ 𝑆 ) ∧ ( ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ∧ ( 𝑧 + 𝑤 ) ∈ 𝑆 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + ( 𝑧 + 𝑤 ) ) − ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) = ( 𝑤 + 𝑧 ) ) |
29 |
|
simprr |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑆 ( ( 𝑥 + 𝑦 ) − 𝑥 ) ∈ 𝑆 ) ∧ ( ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ∧ ( 𝑧 + 𝑤 ) ∈ 𝑆 ) ) → ( 𝑧 + 𝑤 ) ∈ 𝑆 ) |
30 |
|
simplr |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑆 ( ( 𝑥 + 𝑦 ) − 𝑥 ) ∈ 𝑆 ) ∧ ( ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ∧ ( 𝑧 + 𝑤 ) ∈ 𝑆 ) ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑆 ( ( 𝑥 + 𝑦 ) − 𝑥 ) ∈ 𝑆 ) |
31 |
|
oveq1 |
⊢ ( 𝑥 = ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) → ( 𝑥 + 𝑦 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + 𝑦 ) ) |
32 |
|
id |
⊢ ( 𝑥 = ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) → 𝑥 = ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) |
33 |
31 32
|
oveq12d |
⊢ ( 𝑥 = ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) → ( ( 𝑥 + 𝑦 ) − 𝑥 ) = ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + 𝑦 ) − ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) |
34 |
33
|
eleq1d |
⊢ ( 𝑥 = ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) → ( ( ( 𝑥 + 𝑦 ) − 𝑥 ) ∈ 𝑆 ↔ ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + 𝑦 ) − ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ∈ 𝑆 ) ) |
35 |
|
oveq2 |
⊢ ( 𝑦 = ( 𝑧 + 𝑤 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + 𝑦 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + ( 𝑧 + 𝑤 ) ) ) |
36 |
35
|
oveq1d |
⊢ ( 𝑦 = ( 𝑧 + 𝑤 ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + 𝑦 ) − ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) = ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + ( 𝑧 + 𝑤 ) ) − ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) |
37 |
36
|
eleq1d |
⊢ ( 𝑦 = ( 𝑧 + 𝑤 ) → ( ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + 𝑦 ) − ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ∈ 𝑆 ↔ ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + ( 𝑧 + 𝑤 ) ) − ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ∈ 𝑆 ) ) |
38 |
34 37
|
rspc2va |
⊢ ( ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ∈ 𝑋 ∧ ( 𝑧 + 𝑤 ) ∈ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑆 ( ( 𝑥 + 𝑦 ) − 𝑥 ) ∈ 𝑆 ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + ( 𝑧 + 𝑤 ) ) − ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ∈ 𝑆 ) |
39 |
19 29 30 38
|
syl21anc |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑆 ( ( 𝑥 + 𝑦 ) − 𝑥 ) ∈ 𝑆 ) ∧ ( ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ∧ ( 𝑧 + 𝑤 ) ∈ 𝑆 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + ( 𝑧 + 𝑤 ) ) − ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ∈ 𝑆 ) |
40 |
28 39
|
eqeltrrd |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑆 ( ( 𝑥 + 𝑦 ) − 𝑥 ) ∈ 𝑆 ) ∧ ( ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ∧ ( 𝑧 + 𝑤 ) ∈ 𝑆 ) ) → ( 𝑤 + 𝑧 ) ∈ 𝑆 ) |
41 |
40
|
expr |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑆 ( ( 𝑥 + 𝑦 ) − 𝑥 ) ∈ 𝑆 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( ( 𝑧 + 𝑤 ) ∈ 𝑆 → ( 𝑤 + 𝑧 ) ∈ 𝑆 ) ) |
42 |
41
|
ralrimivva |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑆 ( ( 𝑥 + 𝑦 ) − 𝑥 ) ∈ 𝑆 ) → ∀ 𝑧 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝑧 + 𝑤 ) ∈ 𝑆 → ( 𝑤 + 𝑧 ) ∈ 𝑆 ) ) |
43 |
1 2
|
isnsg2 |
⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ↔ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑧 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝑧 + 𝑤 ) ∈ 𝑆 → ( 𝑤 + 𝑧 ) ∈ 𝑆 ) ) ) |
44 |
9 42 43
|
sylanbrc |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑆 ( ( 𝑥 + 𝑦 ) − 𝑥 ) ∈ 𝑆 ) → 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ) |
45 |
8 44
|
impbii |
⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ↔ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑆 ( ( 𝑥 + 𝑦 ) − 𝑥 ) ∈ 𝑆 ) ) |