| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0ex |
|- (/) e. _V |
| 2 |
|
f0 |
|- (/) : (/) --> RR |
| 3 |
|
xp0 |
|- ( (/) X. (/) ) = (/) |
| 4 |
3
|
feq2i |
|- ( (/) : ( (/) X. (/) ) --> RR <-> (/) : (/) --> RR ) |
| 5 |
2 4
|
mpbir |
|- (/) : ( (/) X. (/) ) --> RR |
| 6 |
|
noel |
|- -. x e. (/) |
| 7 |
6
|
pm2.21i |
|- ( x e. (/) -> ( ( x (/) y ) = 0 <-> x = y ) ) |
| 8 |
7
|
adantr |
|- ( ( x e. (/) /\ y e. (/) ) -> ( ( x (/) y ) = 0 <-> x = y ) ) |
| 9 |
6
|
pm2.21i |
|- ( x e. (/) -> ( x (/) y ) <_ ( ( z (/) x ) + ( z (/) y ) ) ) |
| 10 |
9
|
3ad2ant1 |
|- ( ( x e. (/) /\ y e. (/) /\ z e. (/) ) -> ( x (/) y ) <_ ( ( z (/) x ) + ( z (/) y ) ) ) |
| 11 |
1 5 8 10
|
ismeti |
|- (/) e. ( Met ` (/) ) |