| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0ex |  |-  (/) e. _V | 
						
							| 2 |  | f0 |  |-  (/) : (/) --> RR | 
						
							| 3 |  | xp0 |  |-  ( (/) X. (/) ) = (/) | 
						
							| 4 | 3 | feq2i |  |-  ( (/) : ( (/) X. (/) ) --> RR <-> (/) : (/) --> RR ) | 
						
							| 5 | 2 4 | mpbir |  |-  (/) : ( (/) X. (/) ) --> RR | 
						
							| 6 |  | noel |  |-  -. x e. (/) | 
						
							| 7 | 6 | pm2.21i |  |-  ( x e. (/) -> ( ( x (/) y ) = 0 <-> x = y ) ) | 
						
							| 8 | 7 | adantr |  |-  ( ( x e. (/) /\ y e. (/) ) -> ( ( x (/) y ) = 0 <-> x = y ) ) | 
						
							| 9 | 6 | pm2.21i |  |-  ( x e. (/) -> ( x (/) y ) <_ ( ( z (/) x ) + ( z (/) y ) ) ) | 
						
							| 10 | 9 | 3ad2ant1 |  |-  ( ( x e. (/) /\ y e. (/) /\ z e. (/) ) -> ( x (/) y ) <_ ( ( z (/) x ) + ( z (/) y ) ) ) | 
						
							| 11 | 1 5 8 10 | ismeti |  |-  (/) e. ( Met ` (/) ) |