Description: Version of 19.42 with three quantifiers and a disjoint variable condition requiring fewer axioms. (Contributed by NM, 21-Sep-2011) (Proof shortened by Wolf Lammen, 27-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | 19.42vvv | |- ( E. x E. y E. z ( ph /\ ps ) <-> ( ph /\ E. x E. y E. z ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exdistr2 | |- ( E. x E. y E. z ( ph /\ ps ) <-> E. x ( ph /\ E. y E. z ps ) ) |
|
2 | 19.42v | |- ( E. x ( ph /\ E. y E. z ps ) <-> ( ph /\ E. x E. y E. z ps ) ) |
|
3 | 1 2 | bitri | |- ( E. x E. y E. z ( ph /\ ps ) <-> ( ph /\ E. x E. y E. z ps ) ) |