Metamath Proof Explorer


Theorem 19.42vvv

Description: Version of 19.42 with three quantifiers and a disjoint variable condition requiring fewer axioms. (Contributed by NM, 21-Sep-2011) (Proof shortened by Wolf Lammen, 27-Aug-2023)

Ref Expression
Assertion 19.42vvv
|- ( E. x E. y E. z ( ph /\ ps ) <-> ( ph /\ E. x E. y E. z ps ) )

Proof

Step Hyp Ref Expression
1 exdistr2
 |-  ( E. x E. y E. z ( ph /\ ps ) <-> E. x ( ph /\ E. y E. z ps ) )
2 19.42v
 |-  ( E. x ( ph /\ E. y E. z ps ) <-> ( ph /\ E. x E. y E. z ps ) )
3 1 2 bitri
 |-  ( E. x E. y E. z ( ph /\ ps ) <-> ( ph /\ E. x E. y E. z ps ) )